Paper “Primitive subgroups and PST-groups” to appear in Bull. Aust. Math. Soc.

The following paper has been accepted for publication. We will inform about the publication details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero

Primitive groups and PST-groups

Bull. Aust. Math. Soc.


All groups considered in this paper are finite. A subgroup H of a group G is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of G containing H as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013), 55–62] proved that every primitive subgroup of G has index a power of a prime if and only if G/Φ(G) is a solvable PST-group. Let X denote the class of groups G all of whose primitive subgroups have prime power index. It is established here that a group G is a solvable PST-group if and only if every subgroup of G is an X-group.

2010 Mathematics subject classification: primary 20D10; secondary 20D15, 20D20

Keywords and phrases: finite groups, primitive subgroups, solvable PST-groups, T0-groups